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Abstract

Progressive brain atrophy is a key neuropathological hallmark of Alzheimer's disease

(AD) dementia. However, atrophy patterns along the progression of AD dementia are

diffuse and variable and are often missed by univariate methods. Consequently, iden-

tifying the major regional atrophy patterns underlying AD dementia progression is

challenging. In the current study, we propose a method that evaluates the degree to

which specific regional atrophy patterns are predictive of AD dementia progression,

while holding all other atrophy changes constant using a total sample of 334 subjects.

We first trained a dense convolutional neural network model to differentiate individ-

uals with mild cognitive impairment (MCI) who progress to AD dementia versus those

with a stable MCI diagnosis. Then, we retested the model multiple times, each time

occluding different regions of interest (ROIs) from the model's testing set's input. We

also validated this approach by occluding ROIs based on Braak's staging scheme. We

found that the hippocampus, fusiform, and inferior temporal gyri were the strongest

predictors of AD dementia progression, in agreement with established staging

models. We also found that occlusion of limbic ROIs defined according to Braak stage

III had the largest impact on the performance of the model. Our predictive model

reveals the major regional patterns of atrophy predictive of AD dementia progression.

These results highlight the potential for early diagnosis and stratification of individ-

uals with prodromal AD dementia based on patterns of cortical atrophy, prior to

interventional clinical trials.

Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the
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found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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1 | INTRODUCTION

Alzheimer's disease (AD) dementia is a complex progressive neurode-

generative disease and the leading cause of dementia (Jack

et al., 2018; McKhann et al., 1984). The phenotype of AD dementia is

characterized by brain atrophy (Frisoni et al., 2010), and progressive

volume loss, as evident with structural magnetic resonance imaging

(MRI) (Dallaire-Théroux et al., 2017; Halliday, 2017; Pini et al., 2016).

The pattern of brain atrophy displayed by single individuals is highly

complex and variable (Jack, Knopman, et al., 2010), generally starting

in the medial temporal lobes (Bobinski et al., 1997; Jack et al., 1999),

and later progressing to neocortical regions (Fox et al., 2001; Whitwell

et al., 2007). The rate of atrophy in AD dementia is nonlinear (Jack

et al., 2013), with considerable variability observed in the spatial pat-

tern of atrophy displayed by individuals (Noh et al., 2014). Thus, sim-

ple univariate measures of regional volume loss may not adequately

capture and quantify the spatiotemporal complexities of progressive

brain atrophy in AD dementia.

To properly handle the nonlinearities in the spatiotemporal evo-

lution of biomarkers along the AD dementia continuum (Jack

et al., 2013), many studies have employed machine (and deep) learn-

ing modeling solutions (Stamate et al., 2019; Suk et al., 2014; Yang

et al., 2021). In particular, studies utilizing convolutional neural net-

work architecture, with its established capability of extracting com-

plex feature representations from large datasets, have been

employed to accurately predict progression from mild cognitive

impairment (MCI) to AD dementia (Huang et al., 2019; Li

et al., 2019; Li & Liu, 2019; Spasov et al., 2019). However, most pre-

vious studies focused on improving the predictive accuracy of

models, rather than providing interpretable findings in clinical set-

tings. Thus, the spatiotemporal patterns of brain atrophy that are

predictive of progression from MCI to AD dementia, tested in a

model that can properly capture complex feature representations,

remain largely unknown.

In the current study, we aimed to identify the major spatial pat-

terns of brain atrophy underlying the progressive neurodegenera-

tive cascade in AD dementia. To that effect, we deployed a

convolutional neural network model to differentiate progressive

versus stable MCI based on whole brain gray matter (GM) density

maps derived from structural MRI. We then performed occlusion

analysis (Kwak et al., 2022), retesting the model while removing sin-

gle regions from its input, to estimate the contribution of regional

cortical atrophy to the progression of AD dementia. Finally, we

studied the spatial pattern of atrophy in more localized substates

(the medial temporal lobe) and evaluated our methods against a

well-established staging scheme for AD dementia progression

(Braak & Braak, 1991).

2 | MATERIALS AND METHODS

2.1 | Participant characteristics

Data used in the preparation of this article were obtained from the

Alzheimer's Disease Neuroimaging Initiative (ADNI). The ADNI was

launched in 2003 as a public–private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has

been to test whether serial MRI, other biological markers, and clinical

and neuropsychological assessments can be combined to measure the

progression of MCI and AD dementia. For up-to-date information, see

www.adni-info.org. All subjects provided written informed consent

and the study protocol was approved by the local Institutional Review

Boards. We used 219 subjects from the ADNI database to train the

deep learning model to differentiate between subjects with AD

dementia and cognitively normal (CN) control participants. In accor-

dance with recent recommendations (Jack et al., 2018) all subjects

with AD dementia had abnormal levels of cerebrospinal fluid (CSF)

Amyloid beta Aβ42 and CSF p-tau181 (henceforth, A + T+), based on

established cut-offs (Ewers et al., 2019), while all CN subjects dis-

played no signs of such pathology (henceforth, A � T�). Cut-off

values were <976.6 pg/ml for CSF Aβ42 and >21.8 pg/ml for p-tau181.

The model was optimized during training based on five-fold cross vali-

dation (Kwak et al., 2021). We subsequently tested the model with an

independent dataset composed of 115 A+ MCI subjects, obtained

from the ADNI-2/GO cohort. This testing set was partitioned into

subjects who showed progressive MCI (pMCI) or stable MCI (sMCI),

depending on whether they progressed to A + T+ AD dementia or

not over an 18 months period. We excluded 13 additional subjects

who reverted to normal cognition over the same time period. Demo-

graphic characteristics of each subsample used in this study are pre-

sented in Table 1.

2.2 | Image acquisition

Structural MRIs were acquired in the ADNI study using 3 T scanners

and were based on either an inversion recovery-fast spoiled gradient

recalled or a magnetization-prepared rapid gradient-echo sequences

with sagittal slices and voxel size of 1.0 � 1.0 � 1.2 mm (Jack,

Bernstein, et al., 2010). Full details of the T1 acquisition parameters
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and imaging processing steps are listed on the ADNI website (http://

adni.loni.usc.edu/methods/documents/).

2.3 | Image processing

T1-weighted images were downloaded from the ADNI database.

T1-weighted images were analyzed using Statistical Parametric Map-

ping 12 (SPM12; Wellcome Department of Imaging Neuroscience,

Institute of Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm)

running on MATLAB 9.8.0 (Math-Works, Natick, MA, USA). Briefly, all

MR images were aligned such that the origin was located at the ante-

rior commissure and segmented into GM, white matter, and CSF

(Ashburner & Friston, 2005). We then used the diffeomorphic ana-

tomical registration through exponentiated lie algebra (DARTEL) regis-

tration (Ashburner, 2007) to normalize the six tissue probability maps

to Montreal Neurological Institute space, with a resolution of 2 mm

isotropic voxels, and produce the final GM density maps. Subse-

quently, all GM density images were used in the original intact models,

as well as during occlusion analysis (see below). Cortical volumetric

parcellation was performed as an initial step prior to occlusion analysis

with the automated parcellation tool available in FreeSurfer v6.0

(https://surfer.nmr.mgh.harvard.edu/), based on the Desikan–Killiany

protocol (Desikan et al., 2006).

2.4 | Procedure overview

While the progression from MCI to AD dementia is a continuous pro-

cess, the binary task of classifying pMCI versus sMCI relies on clinical

diagnoses made by trained clinicians and established criteria, coupled

here by the NIA-AA research framework (Jack et al., 2018). As such, it

provides a useful avenue for studying progression along the AD con-

tinuum. To delineate the contribution of regional atrophy patterns to

AD dementia progression, we extended an approach we have intro-

duced recently in a study on the involvement of hippocampal sub-

fields in AD dementia progression (Kwak et al., 2022). This approach

is based on a combination of a prognostic deep learning model with

occlusion learning. Our approach begins by training and testing the

model in the task of differentiating pMCI versus sMCI, based on

whole-brain GM volume. The model is then retested multiple times,

wherein specific brain regions are occluded from the model's testing

set's input data, while all other model inputs remain unchanged. The

performance of the models with occluded input is then compared to

that of the intact, full model, and ranked according to differences with

respect to the intact model. Confidence intervals for the performance

metrics of the model were estimated via bootstrapping (10,000 per-

mutations, 80% of the data).

2.5 | Deep learning model

Our model is based on the 3D Densely connected convolutional neu-

ral network (DenseNet) architecture (Huang et al., 2017), which has

been designed such that all layers are directly connected to ensure

maximum information flow in the network. The model's proposed

architecture is shown in Figure 1. The 3D volumes of GM density with

size of 91 � 109 � 91 were used as input to the our model. Data aug-

mentation was performed on the training set by flipping volumes left

to right and randomly shifting by up to 10% and rotating by up to 20�

in any direction. For each layer, the feature maps resulting from of all

preceding layers are used as inputs. The DenseNet model alleviates

the vanishing gradient problem and has a substantially lower number

of parameters than many other models (Huang et al., 2017). DenseNet

consists of a convolutional layer, four dense blocks, three transition

layers, a global averaging pooling layer, and a fully connected layer.

Each dense block consists of several convolutional layers and a transi-

tion layer. Each dense block includes a composite function of multiple

consecutive operations, including batch normalization layer, leaky rec-

tified linear unit, a 1 � 1 � 1 convolutional layer, a 5 � 5 � 5 convolu-

tional layer and a dropout layer. A transition layer between two dense

blocks performs a down-sampling operation, which consists of batch

normalization, 3 � 3 � 3 convolutional, leaky rectified linear unit, a

dropout layer, and 2 � 2 � 2 average pooling layer. Global averaging

pooling layers are then connected by a fully connected layer. The last

fully connected layer generates a probability distribution over two

labels with a sigmoid function.

2.6 | Implementation

The deep learning model was implemented in the Keras library with

the TensorFlow 2.0 backend. All training and testing were performed

on an Ubuntu system 18.04.3, with 16 GB RAM, Intel® Xeon® CPU

TABLE 1 Demographics
Training data Test data

AD (A + T+) CN (A � T�) pMCI sMCI

N 110 109 34 81

Age 72.9 ± 8.0 71.0 ± 5.3 72.3 ± 5.1 72.8 ± 6.9

Gender, female 46 (41.8%) 57 (52.3%) 14 (41.2%) 24 (29.6%)

MMSE 22.9 ± 2.0 29.1 ± 1.1 27.2 ± 1.7 28.0 ± 1.8

Note: Continuous variables are presented as mean ± SD and categorical variable is presented as %.

Abbreviations: AD, Alzheimer's disease; CN, cognitively normal; MMSE, Mini-Mental State Examination;

N, number of subjects; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive

impairment.
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@2.4 GHz, and 16 GB Nvidia Tesla V100 graphic cards. The weights

of our model were randomly initialized from a Gaussian distribution.

The model was trained for 200 epochs with a batch size of 24 and

optimized using stochastic gradient descent based on adaptive esti-

mation of first- and second-order moments (Kingma & Ba, 2015) and

an exponentially decaying learning rate. The initial learning rate was

set at 0.0001 and decayed by a factor of 0.9 after every 10,000 steps.

A dropout layer was included in the dense block, with the dropout

rate set to 0.2. In the batch normalization step, beta and gamma

weights were initialized with L2 regularization set at 1 � 10�4 and

epsilon set to 1.1 � 10�5. An L2 regularization penalty coefficient,

included in the fully connected layer, was set at 0.01. The model was

stable after an iteration of 150 epochs. Training time was about 10 h.

2.7 | Occlusion analysis

Occlusion analysis was used as in our previous studies (Kwak,

Giovanello, et al., 2021; Kwak et al., 2022). Here, occlusion was used

to identify the relative contribution of each brain region to prediction

of AD dementia progression, while holding all other complex, multi-

voxel atrophy patterns constant. Cortical regions were identified

based on FreeSurfer's cortical parcellation routine (see Section 2.3).

To perform occlusion analysis on each single brain region, we masked

it out from each input image by setting the values of all voxels corre-

sponding to that brain region to zero. We then retested the model's

performance with occlusion and quantified the contribution of the

occluded region to the model's performance in predicting regional

atrophy as the following:

ΔAcci ¼Acc�Acci
Acc

ð1Þ

with Acc referring to the performance of the intact model with unmo-

dified input images, and Acci referring to the model's performance on

input images with region i occluded.

We also implemented patch-based occlusion analysis to evaluate

more specific regional contributions to the performance of the predic-

tion model. We first defined the initialization mask around the struc-

ture of interest, for example, the medial temporal lobe, merging ROIs

(i.e., entorhinal, fusiform, parahippocampal, hippocampus, and amyg-

dala) to define the initial mask. We then masked out 5 � 5 � 5

patches centered around each voxel of the initial mask from the input

data. We then evaluated the ΔAcc for each occluded patch by retest-

ing the trained model and assigning the ΔAcc to the central voxel of

that patch. We iteratively performed this task for all voxels in the ini-

tial mask to generate a map depicting the contribution of voxels to

the prediction of AD dementia progression within the target ROI.
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F IGURE 1 Study design. An illustration of the proposed deep learning model used in this study. A 3D-DenseNet convolutional neural

network model was trained to differentiate AD and CN subjects based on whole brain GM density maps. The model was then tested in the task
of classifying stable and progressive MCI. The trained model was subsequently retested multiple times in conjunction with occlusion analysis,
wherein brain regions, defined based on a whole brain atlas, were removed from the model's input. The effect of occlusion on the performance of
the model, relative to that of an intact model, was then calculated and visualized. AD, Alzheimer's disease; CN, cognitively normal; GM, gray
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2.8 | Contribution of Braak ROIs to prediction of
AD dementia progression

We next explored the contribution of atrophy in ROIs defined based

on Braak's staging scheme (Braak & Braak, 1991) to prediction of AD

dementia progression. This influential staging scheme delineates neu-

rofibrillary pathology in early, intermediate, and late AD dementia. We

tested the extent to which atrophy in Braak ROIs contributed to the

performance of our model in the task of differentiating pMCI versus

sMCI. In the current study, we focused on Braak stages I/II, which cor-

respond to the transentorhinal stage, Stages III and IV, which corre-

spond to the limbic stage, and Stages V and VI, which correspond to

the isocortical stages. Braak ROIs were created by compositing

FreeSurfer-derived ROIs (Table S1). We then evaluated via occlusion

analysis the ΔAcc for each Braak ROI/stage, as explained in previous

sections. Results are displayed on a cortical surface using Simple Brain

plot (https://github.com/dutchconnectomelab/Simple-Brain-Plot).

3 | RESULTS

3.1 | Participant demographics

This study included data from a total of 334 subjects, across the AD

dementia, CN, pMCI, and sMCI groups, all obtained from the ADNI

database. Demographic characteristics are presented in Table 1.

Based on the NIA-AA guidelines (Jack et al., 2018), only AD dementia

subjects with abnormal CSF Aβ and tau were included in the study,

while CN subjects had to display no signs of abnormality on the same

biomarkers. In the comparison between the AD dementia and CN

groups, there were no significant differences in gender (χ2 = 2.41,

p = .12) while age (t217 = 2.19, p = .04) was significantly different. All

MCI subjects included in the analysis were amyloid positive (Jack

et al., 2018). Comparison between the pMCI and sMCI groups

revealed no significant differences in age (t113 = 0.32, p = .75) or gen-

der distributions (χ2 = 1.44, p = .23).

3.2 | A deep learning model for differentiating
between pMCI and sMCI

We first trained a 3D convolutional neural network with the Dense-

Net architecture ( Huang et al., 2017) for differentiating between

pMCI and sMCI. We adopted a fivefold cross validation framework in

the training phase, in order to optimize the model and assess its stabil-

ity, and applied data augmentation to the training dataset, as means

to improve the performance of the model. As done in previous stud-

ies, we trained our model on the task of differentiating AD dementia

and CN subjects and then tested the model's performance in classify-

ing pMCI and sMCI (Huang et al., 2019; Li & Liu, 2019; Kwak

et al., 2021; Falahati et al., 2014). We reasoned that training the

model on the former task will allow it to learn the necessary represen-

tations needed in order to successfully complete the latter task. For

the task of differentiating AD dementia and CN subjects, the model

with the best performance achieved an accuracy of 93.75% in one of

the folds and an area under the curve (AUC) of the receiver operating

characteristic (ROC) curve of 0.98. In the task of classifying pMCI ver-

sus sMCI, the proposed deep learning model achieved an accuracy of

73.90% (95% CI: 69.57–77.17) and an AUC of 0.74 (95% CI: 0.65–

0.76; Figure 2a). Accuracy may be misleading when used with an

imbalanced dataset; therefore, we also evaluated the normalized con-

fusion matrix for the classifier's performance (Figure 2b), finding that

the model achieved sensitivity of 0.62 (95% CI: 0.54–0.70) for correct

prediction of pMCI and specificity of 0.78 (95% CI: 0.73–0.83) for

true negative prediction of pMCI (i.e., sMCI). In addition, retesting the

performance of the deep learning model with age-matched training
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F IGURE 2 The performance of the proposed convolutional neural network model. The proposed convolutional neural network model was
evaluated (a) ROC curve of the proposed model in the task of differentiating pMCI versus sMCI. (b) Confusion matrix evaluating sensitivity
(correct prediction of pMCI) and specificity (true negative prediction of pMCI, i.e., sMCI) in the task of differentiating pMCI vs. sMCI. AUC, area
under the (ROC) curve; pMCI, progressive mild cognitive impairment; ROC, receiver operating characteristic; sMCI, stable mild cognitive
impairment

KWAK ET AL. 5

https://github.com/dutchconnectomelab/Simple-Brain-Plot


data resulted in similar accuracy and AUC values (Figure S1). We also

evaluated the extent to which the performance of the proposed

model differed from chance levels, with a permutation test under a

null distribution generated with a random classifier (p < .001,

Figure S2).

3.3 | Regional contribution to prediction of AD
dementia progression

We then used occlusion analysis to identify which regions contributed

to the classification of pMCI versus sMCI. In this analysis, we repeat-

edly tested the deep learning model while occluding different brain

regions in the test dataset to evaluate the individual contribution of

each brain region to model performance, while all other atrophy pat-

terns are held constant. To occlude a region, we set the intensity

values of voxels in that region to zero before inputting the full image

into to the deep learning model. The delta accuracies for each brain

region are defined by the change in the model's accuracy in classifying

pMCI and sMCI after occlusion of a particular brain region normalized

by the model's baseline performance prior to occlusion (See Figure 3a,

b). Occlusion analysis was used in the current study as means to

improve the explainability of the deep learning model's output. We

next wished to assess whether the results of the occlusion analysis

would match those obtained when using another widely used

approach to improve explainability in machine/deep leaning—the use

of class activation map (Zhou et al., 2016). More specifically, we have

generated a gradient-weighted class activation map (Grad-CAM), gen-

erated by visualizing the gradients of the target class flowing back into

the final convolutional layer. The Grad-CAM, however, was very dif-

fuse (Figure S3), diminishing the potential to improve explainability via

their use (Reyes et al., 2020; Saporta et al., 2021). Thus, in the context

of the current study, occlusion analysis emerges as a favorable

approach to improve explainability. We found that the left and right

hippocampus, fusiform gyrus, inferior temporal gyrus, and precuneus

had the largest influence on the performance of the model, and by
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proxy to prediction of progression of MCI to AD dementia. We tested

whether the size of the occluded ROIs related to accuracy in our pro-

posed framework. No significant correlation was observed between

the size of individual occluded ROI (Figure S4A) and accuracy loss

(R2 = 0.01, p = .36; Figure S4B). To further validate our proposed

method, we next assessed the more precise and localized contribution

of voxels within the medial temporal lobe to the prediction of AD

dementia progression using patch-based occlusion analysis. Briefly,

we retested the trained deep learning model, each time occluding a

patch centered on each voxel of the medial temporal region and calcu-

lating differences in accuracy relative to the intact model (Figure 3c).

This analysis showed that within the medial temporal region, the bilat-

eral hippocampus, and amygdala are more central to the prediction of

AD dementia progression (Figure 3d), validating the spatial precision

of our proposed method.

3.4 | Regional occlusion of ROIs based on the
Braak staging scheme

Finally, we validated our occlusion analysis approach by testing

whether occlusion of ROIs, which are defined based on Braak's stag-

ing scheme (Braak & Braak, 1991), results in appropriate model loss

across the different ROIs (Figure 4). We found that the occlusion of

the ROI corresponding to the intermediate Braak stage III, which pri-

marily consists of limbic areas, had the largest impact on the perfor-

mance of the model, relative to other staging-related ROIs (Figure 4).

However, we also found that occlusion of transentorhinal ROIs

defined in Braak stages I/II and limbic ROIs defined in Braak stages IV

also highly impacted the performance. On the other hand, loss in

accuracy was lower when occluding regions associated with the later

Braak stages V and VI. Therefore, the relationships learned by our

model aligned well with existing studies indicating the importance of

regions defined in early Braak stages for predicting progression from

MCI to AD dementia (Braak & Braak, 1991).

4 | DISCUSSION

While progressive brain atrophy is a ubiquitous consequence of AD

dementia, the major spatial patterns of atrophy observed when indi-

viduals progress from the prodromal (MCI) to the clinical phases of

AD dementia are not understood well. The motivation of the current

study was to identify the major spatial patterns of atrophy predictive

of AD dementia progression by leveraging an interpretable deep

learning modeling approach. To that end, we propose a framework

based on a prognostic convolutional neural network model and occlu-

sion analysis to investigate the regional contribution of atrophy pat-

terns to the prediction of AD dementia progression. Our use of

occlusion analysis, in particular, yielded explainable results wherein

the contribution of specific brain regions to the performance of the

model, and by proxy to AD dementia progression can be evaluated

and visualized while holding the contribution of (atrophy in) other

regions constant. We found that the hippocampus, fusiform and infe-

rior temporal gyri and precuneus were the strongest contributors to

the prediction of AD dementia progression. When considering the

medial temporal lobe separately, our analysis revealed larger effects

after hippocampal and amygdala occlusion. Finally, we validated our

approach by occluding ROIs motivated by the influential Braak staging

scheme (Braak & Braak, 1991), finding that the occlusion of a Stage III

(limbic) ROI had the largest impact on the performance of the model.

We report that atrophy in bilateral hippocampus, fusiform and

inferior temporal gyri, and precuneus played a more central role than

other regions in the prediction of progression from MCI to AD

dementia. These findings are consistent with studies reporting that

hippocampus, fusiform, and inferior temporal gyri are affected in early

stages of AD dementia (Convit et al., 1997; De Santi et al., 2001; Jack

et al., 1999). Additionally, we evaluated the spatial precision of our

method by performing patch-based occlusion analysis focused more

locally on the medial temporal lobe. In line with previous studies

(Convit et al., 2000; Grundman et al., 2002; Mitolo et al., 2019) voxels

in the hippocampus and amygdala contributed the most to the

Braak I/II Braak III Braak IV Braak V Braak VI

egats lacitrocosIegats cibmiLegats lanihrotnesnarT

0

60

∆Accuracy

F IGURE 4 Occlusion of Braak staging ROIs. The results of the occlusion analysis are shown where composite ROIs corresponding to five
Braak stages (Stages I/II, III, IV, V, and VI) were occluded, evaluating their contribution to differentiating between pMCI and sMCI. The ΔAcc of
each composite Braak staging ROI superimposed on a medial and radial cortical surface model. pMCI, progressive mild cognitive impairment; ROI,
region of interest; sMCI, stable mild cognitive impairment
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performance of the model and by proxy to AD dementia progression.

Combined, our findings demonstrate that patterns of cortical atrophy,

particularly in medial temporal lobe regions, differentiate individuals

with MCI into those more and less likely to progress to AD dementia.

On the other hand, most of the other brain regions considered in the

model were redundant, contributing minimally to its performance. It

was previously shown that functional redundancy in the brain may

constitute a form of brain reserve (Stern et al., 2020), offering protec-

tion against cognitive decline in normal and pathological aging

(Langella, Mucha, et al., 2021; Langella, Sadiq, et al., 2021; Sadiq

et al., 2021). While speculative at this stage, the current results may

similarly reflect the existence of structural reserve/redundancy, which

contributes to the differences between individuals with stable and

progressive MCI. This could be addressed in future research.

We validated our approach of combining a prognostic deep learn-

ing model with occlusion analysis, by occluding ROIs based on the

Braak staging scheme (Braak & Braak, 1991) and evaluating whether

this step resulted in stage-appropriate results. According to this influ-

ential staging scheme neurofibrillary pathology in AD dementia starts

in transentorhinal cortex, spreading into entorhinal cortex, hippocam-

pus, amygdala and inferior temporal cortex and eventually to other

neocortical regions (Braak & Braak, 1991). Studies utilizing MRI have

demonstrated that the trajectory of atrophy changes in AD dementia

is largely consistent with Braak's staging scheme (Burton et al., 2009;

Jack et al., 2002; Silbert et al., 2003; Whitwell et al., 2012). In the cur-

rent study, we found that occlusion of ROIs corresponding to Braak

stage III had a larger effect on the performance of the prognostic

model, relative to occlusion of Braak I/II ROIs. These results highlight

the importance of limbic areas in the progression from MCI to AD

dementia. Moreover, the effect of occlusion gradually decreased

when ROIs from later Braak stages were occluded. These findings are

consistent with previous studies, documenting brain atrophy in Braak

III regions during the prodromal stages of AD dementia (Desikan

et al., 2008; Yao et al., 2012), as well as with the early involvement of

entorhinal cortex and hippocampus along the AD dementia continuum

(Devanand et al., 2007; Jack et al., 1999). Altogether, our findings sug-

gest that patterns of atrophy starting from the entorhinal cortex and

accumulating up to Braak III regions differentiated subjects with pro-

gressive MCI from those with a more stable MCI diagnosis, consistent

with the former group being composed of subjects who can be

viewed as being at the prodromal stage of AD dementia.

Deep learning models have been applied in multiple biomedical

image analysis tasks, including segmentation (Chen et al., 2018;

Kamnitsas et al., 2017), reconstruction (Schlemper et al., 2018; Yang

et al., 2018), and classification (Cheng et al., 2019; Hosseini-Asl

et al., 2016; Suk et al., 2014). Emphasis on interpretability has

increased in recent years, aimed at better understating how and why

extracted features contribute to successful class prediction. However,

studies have shown that methods such as class activation maps often

fail to provide sufficient interpretable findings in models based on

medical imaging data (Reyes et al., 2020; Saporta et al., 2021). On the

other hand, occlusion analysis, as has been applied here, has been suc-

cessfully applied as an interpretable approach in similar settings

(Kermany et al., 2018; Lu et al., 2021). We suggest that, when com-

bined with a diagnostic or prognostic machine learning model, occlu-

sion analysis can serve as a useful approach for studying the

contribution of complex image-based features to various disease

states.

Several limitations of our study should be acknowledged. First,

although we used one of the biggest publicly available AD dementia

datasets, we acknowledge that future work could benefit from work-

ing with larger sample sizes. Second, our model is based solely on

structural MRI data. Incorporating other imaging modalities or fluid

biomarker data, to assess the contribution of amyloid and tau burden

and their synergies with atrophy (Sadiq et al., 2022) may further bene-

fit the performance of the model and should be considered in future

studies. Third, our study evaluated the major regional patterns of atro-

phy predicative of subsequent progression from MCI to AD dementia.

We recognize that incorporating longitudinal neuroimaging into a sim-

ilar design could provide additional valuable information on the spa-

tiotemporal patterns of atrophy seen in AD dementia progression.

This could also be achieved in future research.

5 | CONCLUSION

In conclusion, we identified the major regional substrates of cortical

atrophy, predictive of AD dementia progression using a combination

of deep learning and occlusion. In agreement with previous results,

we found that atrophy in the hippocampus, fusiform, and inferior tem-

poral gyri was the strongest predictors of AD dementia progression.

These results further establish the potential for early identification of

individuals with MCI who will likely progress to AD dementia based

on patterns of cortical atrophy.
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